0=7u^2-56

Simple and best practice solution for 0=7u^2-56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=7u^2-56 equation:



0=7u^2-56
We move all terms to the left:
0-(7u^2-56)=0
We add all the numbers together, and all the variables
-(7u^2-56)=0
We get rid of parentheses
-7u^2+56=0
a = -7; b = 0; c = +56;
Δ = b2-4ac
Δ = 02-4·(-7)·56
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*-7}=\frac{0-28\sqrt{2}}{-14} =-\frac{28\sqrt{2}}{-14} =-\frac{2\sqrt{2}}{-1} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*-7}=\frac{0+28\sqrt{2}}{-14} =\frac{28\sqrt{2}}{-14} =\frac{2\sqrt{2}}{-1} $

See similar equations:

| 3x=24/2x | | 3/4n–18=1/4n-4 | | −3x2(1−2x)(4−x2)(x4+8)=0 | | 6(4+2x)=5(2x+4) | | v−6=42 | | 4^x+5=3(4^3) | | 5x+6x+3=-5 | | j/8+44=46 | | t/2+7=4 | | 1.7x-7=1.2x+5 | | 24=30+3x | | 2(p-2)-p=-9+p | | h/4+13=17 | | v/9=45 | | 2n+17=4n-26 | | 9x+14=7x+20 | | 7x-(8x-(5x-30))=12 | | 2(6x+9)=4(7x+10) | | -10(k+54)=40 | | −2x+10=30 | | -10(k+54=40) | | (4x-1)(8-x)=0 | | 7x-(8x-(5x-30)=12 | | 5x-10=2- | | 23x-45-30x=-15 | | v/4+5=1 | | -10x-7=26x-6(6x-7) | | 3x+4x=9x+5 | | 13x-37=34 | | 6=-3(x+2)+x | | -9–8g=-7g | | -2(4x+4)=-56 |

Equations solver categories